Numeral Allomorphy of 'One' and 'Two' in Mandarin Chinese **Boer Fu and Danfeng Wu** Massachusetts Institute of Technology

Overview

• The numerals 1 and 2 in Mandarin display all $1: yi_H/yi_F/yi_R$ 2: er/liang

Mandarin tones: H = High, R = Rising, L = Low, F = Falling•We propose a phonological rule and lexical insertion rule to account for their distribution, with a focus on: (a) Numeral allomorphy before classifiers (b) Numeral allomorphy in multi-digit numerals

Implications:

• The behavior of 1 and 2 in multi-digit numerals indicate that Chinese actually distinguishes between synthetic and analytic forms (contra Li & Thompson 1981).

Numeral Allomorphy

•	Single- classifi	-digit num	erals use t	the co	ntex m w ¹	tual f hen in	or is
(1) <i>1 all</i>	omorphy		(2) 2	2 allo	morpl	hy
à	. yi _F	zhi_H n	1ao t	a. lia 2	ang	zhi	n
b	· yi _H 1.ABS Z	ling _R yi _H zero 1.ABS	shi _F room	b. er 2. 'F	ABS Z	ing en ero 2 a 202'	.AB
• (Allomo Contex 3) yi _F – 4) <i>Cont</i>	orphy of 1 tual 1 <i>yi_F</i> i → yi _R /C	is express is subject V _F exical san	sed by to a le adhi	y tone exica	e. I tone	Sa
à	. yi _F 1.cont	zhi _H ma CLAS cat	ao	b. y 1.	i _r cont	ge _F CLAS	li p
•	Absolu	te 1 y_{i_H} is	always in	the h	nigh t	tone ("	Rc
	1 2	Contextı Contextı	ıal: <i>yi_F/yi_F</i> ıal: <i>liang</i>	2	Abs Abs	olute:	yi _l er
	Al	so Obse	erved in	Min	Ch	inese) (
	1	Contextu	al: <i>chit</i>		Abso	olute:	it
	2	Contextu	al: <i>nn</i> g		Abso	olute:	jī

Email: {boerfu, dfwu}@mit.edu

We thank Adam Albright, Neil Banerjee, Michael Kenstowicz, Patrick Niedzielski, Yuta Tatsumi, and David Pesetsky, for valuable discussion. We are also grateful for audience feedback at MIT Morphun.

Allomornhy hoforo Classifiars

lomorphy:

m before solation.

nao at shi BS room

andhi rule:

bear

oom 101').

(Lin 2015)

Allohiorp	Лу	DEIOI	e	Uldssillers	
(5) 1 apple vs. 101 apples					
a.			ge _F	pingguo]]	
		1.CONT CI	LAS	apple <i>'1 apple'</i>	
b. [[yi _F bai _L	ling	$ yi_H [g$	ge _F	pingguo]]	
1.cont hundred	zero	1.ABS CI	LAS	apple '101 apples'	
(6) 2 apples vs. 20	2 app	les			
a.		[liang [g	ge	pingguo]]	
		2.CONT CI	LAS	apple '2 apples'	
b. [[<mark>liang</mark> bai	ling	er] [g	ge	pingguo]]	
2.cont hundred	zero	2.ABS CI	LAS	apples '202 apples'	
• Absolute form us	sed in	stead whe	en it	t is the final digit of a	
multi-digit nume	ral be	fore a clas	ssifi	ier.	
Our proposal:					
(7) C-command R	ule: T	The numera	als	'1' and '2' surface as	

the contextual form when they c-command the following word. Otherwise they are in the absolute form. Adapted from He's (2015) sisterhood rule, modified given classifier noun structure proposed by Cheng & Sybesma (1998).

• C-command Rule also predicts absolute forms in isolation.

Ordinals

(9) Absolute forms in ordinals Г 1•

a.	[d1	yı _H	tang _R	ke	b. [d]
	-th	1.ABS	CLAS	lesson	-tł
	'the	e first]	lesson	•	'tł
C.	[Ø	yi _H]	lou _R		d. [Ø
	-th	1.ABS	floor		-th
	'the	e first t	floor'		'Fe

Ordinals do not c-command the following word.

- ben er shu h 2.ABS CLAS book the second book'
- yue er 1 2.ABS month
- bruary'

Multi-digit Numerals

• Higher bases (100, (Tatsumi 2021), bu (10) The tens digit v a. yı_F qıan_H **1**.cont thousand b. liang qian 2.CONT thousand **Our proposal:**

(11) Morpheme Boundary Rule: the absolute form is used when it is followed by a morpheme boundary '+'.

> $|yi_{H} + shi_{I}|$ yi_F # bai_I yi_F # qian

Synthetic vs. Analytic

- analytic for higher bases.

- A monotonic trend in numeral bases: lower bases imply its use in higher bases.
- (12) * erqian

Selected References: Bobaljik, J. 2012. Universals in comparative morphology: Suppletion, superlatives, and the structure of words. Cheng, L. & R. Sybesma 1998. Yi-wan tang, yi-ge tang: Classifiers and massifiers. Greenberg, J. 1978. Generalizations about numeral systems. He, C. 2015. Complex numerals in Mandarin Chinese are constituents. Lin, P. 2015. Taiwanese grammar: a concise reference. Tatsumi, Y. 2021. Linguistic realization of measuring and counting in the nominal domain: A cross-linguistic study of syntactic and Semantic variations.

, 1000) behave like classifiers				
ut base of 10 does not.				
s. hundreds, thousands digit				
yi _F	bai _L	yi _H	shi _R	
1.cont	hundred	1.ABS	ten	' 1110 '
liang	bai	er	shi	
2.cont	hundred	2.abs	ten	' 2220'

i _R :10	er + shi:10
L:100	liang # bai:100
n _н :1000	liang # gian:1000

• Mandarin is synthetic for numerals of base 10, but

• Also monomorphemic archaic forms *nian* '20', *sa* '30'. • Similar to English: *fifty 50* v. *five hundred 500*, French: soixante 60 v. quatre vingts 80.

*ABA

Greenberg (1978): Use of contextual multiplier in

• Also a case of *ABA, where A = synthetic, B = analyticliang bai er shi 2.ABS thousand 2.cont hundred 2.ABS ten ·2220'

• Bobaljik's (2012) containment analysis for *ABA in adjectives: good, better, best, not good, better, *goodest • Superlatives (*best*) contain comparatives (*better*). • But it cannot account for numeral bases: higher bases

cannot be said to "contain" lower bases.